Arbitrarily shaped multiple spatial cluster detection for case event data
نویسندگان
چکیده
An original method is proposed for spatial cluster detection of case event data. A selection order and the distance from the nearest neighbour are attributed to each point, once pre-selected points have been taken into account. This distance is weighted by the expected distance under the uniform distribution hypothesis. Potential clusters are located by modelling the multiple structural change of the distances on the selection order and the best model (containing one or several potential clusters) is selected using the double maximum test. Finally a p-value is obtained for each potential cluster. With this method multiple clusters of any shape can be detected.
منابع مشابه
SPATCLUS: An R package for arbitrarily shaped multiple spatial cluster detection for case event data
This paper describes an R package, named SPATCLUS that implements a method recently proposed for spatial cluster detection of case event data. This method is based on a data transformation. This transformation is achieved by the definition of a trajectory, which allows to attribute to each point a selection order and the distance to its nearest neighbour. The nearest point is searched among the...
متن کاملEvaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters
Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient fo...
متن کاملA flexible spatial scan test for case event data
A new method is proposed for identifying clusters in spatial point processes. It relies on a specific ordering of events and the definition of area spacings which have the same distribution as one-dimensional spacings. Then the spatial clusters are detected using a scan statistic adapted to the analysis of one-dimensional point processes. This flexible spatial scan test seems to be very powerfu...
متن کاملDetection of arbitrarily-shaped clusters using a neighbor-expanding approach: A case study on murine typhus in South Texas
BACKGROUND Kulldorff's spatial scan statistic has been one of the most widely used statistical methods for automatic detection of clusters in spatial data. One limitation of this method lies in the fact that it has to rely on scan windows with predefined shapes in the search process, and therefore it cannot detect cluster with arbitrary shapes. We employ a new neighbor-expanding approach and in...
متن کاملStarScan: A Novel Scan Statistic for Irregularly-Shaped Spatial Clusters
Introduction Kulldorff’s spatial scan statistic1 detects significant spatial clusters of disease by maximizing a likelihood ratio statistic over circular spatial regions. The fast localized subset scan2 enables scalable detection of proximity-constrained subsets and increases power to detect irregularly-shaped clusters, However, unconstrained subset scanning within each circular neighborhood2, ...
متن کامل